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We construct 3 method for modelling of three-dimensional, time
dependent, compressible fluid flow in a gravitational field on a rotating
cartesian-product grid with a spatially rough metric that bounds selu-
tions by the total initial physical energy. Specifically: {1) the total
physical energy is an /, norm on the model state and (2) this total
energy cannot increase provided the timestep does not exceed CFL
{imits. In particular, the first property means that our measure of the
energy is always positive unless the mass, momentum, and internal
energy are all everywhere zero. These conditions guarantee that no error
can grow unchecked. This is thought tc be a desirable property,
although only in the case of linear systems is it sufficient for con-
vergence of a consistent approximation to the true solution, The great
merit of this choice of norm is that the method is applicable 1o a wide
variety of real physical problems because, even ih complex circumstan-
ces, the total physical energy is conserved and each component of this
energy is in limited supply. We first note that conservation of energy is
equivalent to antisymmetry of a particular tendency operator. Energy-
bounded approximations of fluid flow are then constructed either from
antisymmetric finite difference operators, or from antisymmetric
Galerkin operators. The method may be particularly useful when
reliability in difficult conditions is needed. For example, when the
viscosity must be small in order to simulate flow separation or tur-
bulence, a medel of viscous dissipation may be chosen purely from
physical considerations, uncompromised by any requirements of
numerical stability. We demonstrate this for an “internal hydraulic
jump” flow over a bell-shaped mountain, simulating an internal wave
as it steepens and breaks to form a turbulent jump.  © 1993 Academic
Press, Inc.

1. INTRODUCTION

Finite difference methods which instantangously conserve
energy are well known (e.g,, [2, 3, 4]), but these are neither
sufficient to guarantee net conservation of total energy
because of additional error due to time-differencing, nor do
they limit the supply of all forms of energy. See [15] for an
analysis of instability associated with this phenomenon in
“leapfrog” integration of meteorological models. Schemes
which approximate the “conservation-law form” of the
equations [137], where energy is one of the state variables,
are frequently designed to conserve energy, but then the
total energy cannot be a complete norm on the system state,

so that conservation of energy in such schemes does not
provide a bound on the system state.

We derive an explicit method in which the numerical
approximation errors can only cause a decrease in the total
energy, provided that the timestep does not exceed CFL
limits. An implicit version of this conserves energy exactly.
In this scheme the initial total energy provides a bound on
the system state, just as it does in a real fluid. This bound is
related to the possibility of choosing state variables for
which the total energy is the square of a euclidean distance
on the system state. Each of these state variables represents
a form of energy in limited supply. For example, the supply
of heat, or of kinetic energy, is limited since neither absolute
temperature, nor kinetic energy, may be negative.

In practice the total energy is limited only to the accuracy
to which computations are performed, and in fact numerical
truncation error is a source of uncorrellated noise, and
hence a source of energy. For the hydraulic jump experi-
ment we used 32-bit floating-point arithmetic (24-bit
mantissa). This experiment was done with and without
Rayleigh friction (9.1). Similar experiments were done on a
three-dimensional 20 x20x 9 grid. In no case did mean
energy increase faster than one part in 10% per timestep
when CFL limits were met.

Our design is intended for modelling flow over rough
terrain, for which detail of the initial conditions is not well
known, but the main objective is to simulate the effects of
the terrain. The flows of interest evolve slowly relative to the
timestep, so that a first-order accurate, dissipative time-
difference scheme is suitable. We choose a compressible
ideal gas model because this i1s simpler than, for example,
the hydrostatic approximation.

We choose to stagger the state variables so that wind
is represented at cell faces, while energy and mass are
represented by cell-integral values. If the state variables are
unstaggered the shortest wavelength acoustic and gravity
waves have zero frequency in the model, because wind and
mass become decoupled at the shortest scale. In our discrete
approximation, we define the kinetic energy in a way which
ensures that it is positive unless the velocity is everywhere
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zero. One disadvantage of this particular finite difference
scheme is that it cannot exactly conserve momentum on an
irregular grid. Another disadvantage is that it does not
apply to a moving, flexible grid, although a splitting
approximation might be employed to separate grid motion
from fluid motion since the scheme is well suited to split-
iings in which the sub-steps are each bounded by the total
physical energy.

2. ANTISYMMETRY AND CONSERVATION LAWS

2. Conservation of Energy

Define the following real scalar fields: ¥ — R on a three-
dimensional domain ¥~ at time f; a gravitational + cen-
trifugal potential &, a fluid density p, and a fluid pressure p.
Define the following real vector fields: ¥~ - %%, a rigid-
rotation vector £2, a fluid momentum density &, and a fluid
velocity v; v(s) = u(s)/p(s).

We start with the following description of an ideal gas
with gas constant R, specific heat C,, and thermedynamic
parameter k = R/C: ‘

dfot(wy= —(u-Viv—olV - )—2Qxu—Vp—-p VP
/o p)=—v-Vp—(1 +x)pV-v (2.1)
8/ot(p)= -V u

We may add an arbitrary constant to the potential & in
(2.1), and we now choose one such that O0<@<d_,,,
where @, is as small as possible, so as to avoid computa-
tional problems due to finite numerical precision. If E is the
total physical energy of the system, then we make £ an 1.,
norm (the euclidean distance between states of the system)
by defining new state variables,

w=p Py
c=(2p/x)"*
h=(2p@)"? 4

g=—V(20)"",

so that the total kinetic plus internal plus gravitational
energy in the domain ¥ is

E=| Lw-w+c?+h?).

-

(2.3)

Substituting (2.2) into (2.1) and noting that gh = —p'? Ve,

dfot(w)= —i(V.v+v-Viw—2Q xw

—1p 12 Vkc + gh (24)

dfdt(cy=—3(V-o+v-Vic~LexV.p~ 2w (2.5)
dforihy=—4(V-v+v-Vih—g-w {2.6)
which we can write in the form
W w
8ot e [=A| ¢ |=4E, 2.7
h h
where
—HV-v+0-V)-20x —1lp Wk g
A= —iexV.p~12 — iV -s40.V) 0
-z 0 -V .o+v-V)
(2.8)

On a domain ¥~ which is periodic or has suitable boundary
conditions, 4 is an antisymmetric operator; i.e.,, A= — A*,
where 4* is the adjoint of A4 (since by inspection
A;= —AY). This implies that the energy (2.3) is conserved
because, using the notation a*b=a-b for the euclidean
inner product of any two vectors @ and b associated with a
point in ¥,

Bjer2E) =001 g7
=L (E*3/B1(E) + (B/0L(E))* &)

=] aarane=o (29)

Conversely, the reason why A4 is antisymmetric is that
energy conservation requires it. We can conclude this from
the same argument used to demonstrate that cnergy conser-
vation implies antisymmetry of the numerical approxima-
tion of A, by replacing the finite dimensional inner product
in (5.13) with <a, 5> = [, a*h. The form of A4 is not unique,
however. For example, another antisymmetric form is

—iV.o+p - V)-20x —p~ Ve Vi g
A= — KV .cp~1? —(1—-r) iV p+2-V) 0
—-g- 0 —V.v+v.V)

(2.10)

2.2. Conservarion of Momentum

In the case of constant potential & and zero rotation {2,
total momentum is conserved if the pressure force conserves
momentum and if the diagonal terms in (2.8) which
correspond to the transport of w and A are identical and
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antisymmetric. To see this, note that if & is constant then
the rate of change of momentum is

8/0t(u) = (hd/dt(w) + wd/dt(h))/(2D'7).

Define a projection operator IT such that for any fields over
¥ of vectors v and scalars a and &

v
v
ITyaj|= .
o)
b
Define similarly a permutation operator = such that

L)

Then the rate of change of total momentum may be written

1 wl* _ w
B/BILFWL[[J ..HAH*[h:'—Vp]=O

since A is antisymmetric with identical diagonal elements,
which implies STTAJT* is antisymmetric, so that the integral
is zero as in (2.9). If the transport terms for w and h were
not identical, then A and EHAIT* could not both be
antisymmetric. So from the argument (5.13) we conclude
that conservation of momentum will require identical
approximations of the transport terms for w and A.

2.3. General Coordinaies

We approximate {2.4}-(2.6) in non-orthogonal coor-
dinates where Jdr=u(ds) is the coordinate displacement
vector corresponding to a physical displacement ds, with the
matrices [u],=ér,/0s;, and [n],=2és;/0r;, i,je {1,2,3}.
Define vectors p;, with components [¢. ;= [u1,, normal to
coordinate i-surfaces ;- 5 = 0. Define vectors #,, with com-
ponents {n,],=[#];. Then we define contravariant wind
components @;, and covariant wind components «,,

112

wi=p Tpu

L/ PR

pmp12 (2.11)

so that the kinetic energy density is w - o/2.

3. FINITE DIFFERENCE APPROXIMATION
ON A STAGGERED GRID

We plan to construct our antisymmetric tendency
operator by composition of a few primitive operators that
can be tailored to suit an application. On staggered grids we

need only the same number of operators required for the
unstaggered case if, for any operator on one grid, we use its
transpose, or adjoint, to compute the corresponding opera-
tion on the other grid, in each dimension. This device also
helps to enforce the rules of energy conservation. On a
domain ¥ which is periodic or has suitable boundary
conditions, the gradient V is an antisymmetric operator;
ie, V= —V*since

(@ (V+V*)b3 =<2, Vby +(Va,b) = Viab)=0.

We can achieve a similar property for staggered finite
difference approximations of gradient on the real interval
[0, M7, lor integral M >0, as follows. Cell faces are at
points from the set

FM+1)={};j=0,1,2,., M},

and cell centres are at points from the set

E(M)=1{k;k=05,1525 ., M-05}

Let #° be a vector space. We will be mostly interested
in the cases % =N (real scalars) and ¥ =R* (vectors
with three real components). For a smooth real vector
field £ [0, M] —#, with gradient f': [0, M]— ¥, let
fe:F(M+1)> % be the restriction of f to cell faces;
(fIGY=0U) jeF(M+1). Let (F(M+1), %) be the
linear space of all such lunctions f, defined by pointwise
addition of two functions and multiplication of a function
by a scalar. Let f,: €(M) — # be the restriction of fto cell
centres; f, € (€(M), %'). The transpose or adjoint of a
linear operator T on a linear space X to a linear space ¥ will
be denoted T*. This is the unique operator T*; ¥ — X such
that, for any xe X and ye ¥, (x, T*y>={Tx, p, where
{, > is a euclidean inner product on either X or Y. We
define an operator A to approximate the gradient of /using
{combinations of) differences between cell faces. Its trans-
pose A * operates the other way, using reversed differences
between cell centres to estimate a reversed gradient:

AA(F (M), # )= (M), W), (A fe k)= f(k)
AYAE(M), #) > (F(M+ 1), W), (A= =)
In a similar way we can define an operator O for interpola-

tion from cell centres to cell faces so that its transpose is an
interpolation the other way, from cell faces to cell centres:

D (G(M), %) = (F (M + 1), %), (L)) = f())
U*A(F (M + 1), #7) = (E(M), W), (0¥ )k) = flk).
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The simplest such approximations are, for ke €(M),

{/—\fy)(k)=fy(k+ %)*fsr(k*%)

(3.1)
(OX e Wk)=3(felk— 1)+ folk+ 7))

so that, forje F(M +1)— {0, M},

(D)) =Feli =3 =S+ )
(A* )0} =1(0)— fel2)

(DY) M) = fo(M —3) — f(M)
(D))= H Sl - D)+ Fel + 7))
(Ofe)0)=3(S(0) + f¢(3)

(DS )(M)=3(fo(M —3)+ f(M)).

(3.2)

3.1, Notation

We find that the above notation transiates very easily into
computer code. It allows a model to be programmed at a
high level of abstraction, avoiding a maze of details, by
using sequences of procedure calis that match the sequences
of operators that we will use to describe the model,

To simplify notation, we associate operators with all
finite-dimensional fields as follows. We use the same
symbol to represent both a scalar field fe (¢(M), R) on
a grid of M points, and its associated operator
£ {B(M), R) — (€(M), R) defined by pointwise multiplica-
tion with any other scalar field ge (%(M), R); (fe)k)=
Sk} g(k). Since our fields are aiways real, the adjoint of this
operator s f*=f Similarly, for a field of three-vectors
ve (€(M), R?), its associated operator is v: (€(M), R)—
(€(M), R); (vg)(k), = g(k) v(k),, and the transpose is v*:
(€(M), R*) - (€(M), R) such that, for any other field of
three-veciors we (6{M), M), v*w=rv.w is the conven-
tional vector dot product, but ¢*w is a more natural nota-
tion for constructing adjoints of compositions of operators.

3.2. Finite Differences in Three Dimensions
Define an unstaggered grid G, and three staggered grids
G, Gy, Gy
Go=FC(L)xE(M}x€(N}
G,=F(L+1)xE(M)xE(N)
Gy =F{L)x F(M+ 1) x€(N)
G:=F({L)xBIM)x F(N+1).

We use the notation &, for an operator which gives

differences in the i-direction between cell i-faces,
A (G, W) > (Go, #) ie {1,2,3);

(A gWl, mon)=(Ag(-, m, a))l)

(£ 20)0 m, )= Bl -, m))im) (33)

(D33 m,n)=({Lg(l, m, -))(n).

A similar notation Ol;: (G, ) — (G, #) 1s used for an
operator which interpolates in the i-direction to cell /-faces,
ie{1,2,3}, and its transpose O1*: (G, #7)—> (Gy, #")
interpolates back to cell centres. '

4. TENSOR-PRODUCT FINITE ELEMENT
APPROXIMATION

Our scheme is naturally suited to the Galerkin
approximation method (e.g., [6, 10, 121) because, for our
state variables (2.2), the Galerkin projection minimises
error in the energy norm (2.3), and furthermore, it will never
increase this total energy because the projection is an
orthogonal one onto a linear subspace (with the same
origin). This also means that we will naturally be able to
construct an antisymmetric Galerkin approximation of A
(2.8). Here we do this for a tensor-product spline basis, so
that the required operators may be constructed by composi-
tion of one-dimensional operators on a product of one-
dimensional splines [6]. One way to ensure dynamical
coupling at the shortest scale is to stagger the knots of
splines representing the wind w, relative to the knots of
splines representing mass-like variables 4, c. Another way of
coupling wind and mass is to use an odd-order spline for
wind, and au even-order spline for the mass. This second
scheme has only one set of knots # (M + 1), all at cell faces,
which will simplify the computation of products of mass-
like and wind splines because a three-dimensional integral
of such a product can then be evaluated by a single polyno-
mial per cell, instead of the sum of eight similar polynomials
for the subdivision of each cell implied by staggered knots.
Given a one-dimensional spline basis e,,, m=1, .., M, for
even-order polynomial splines g¢: [0, M] — R with knots
F (M + 1) and coefficients q, ¢ = n.(q), n, defined by

M
g(x)= Y guen(x) (4.1)

and similarly for a one-dimensional spline basis b,
m=0, .., M, for odd-order polynomial splines with the
same knots # (M +1). Then

M
(2 qn=] __en(x)lx).
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And we can define the components of the energy norm (2.3)

using n:
M 2
[ q
x=10

if {e,,} is a B-spline basis [6], then the coefficients q,, (4.1)
are a type of “local average” of g, so it follows from (4.2)
that (n*m.q), must also be (another) type of “local
average.” The Galerkin approximation of a function
/210, M1 — R is the projected function n(n*=,) ' =¥ f.

M
(.’C): Z qm(n:n:eq)m- (42)

m=1

4.1. Representation in Three Dimensions

We represent a mass-like field A: [0, L1x [0, M]x
[0, N1 — R by a three-dimensional tensor-product of even-
order splines with coefficients h, # = &(h), & defined by

Z Z Zel("l €m(7r2)

I=1 m=1 n=1

X en(r3) hlmn

h(rls Fa, I‘3

L oo N (4.3)
@ tm=| [ [ elre e

xh(rls Fa, ?‘3)

and similarly for ¢ = &{c). We represent the contravariamt
wind components ), (2.11) by a three-dimensional tensor-
product of odd-order and even-order splines with coef-
ficients @, 0, = ¥, (w,), ¥, defined by

N
2 2 Z bilr))
=0 m=1 n=1
X f—’m(rz) en(rB) ml,l’mn

(¥Fo )= JL J:;OJ.N b{r,

r=9 =0

UJ r;,rz,r:.\

)em(r2)
X E’"(l’3) wl(rl! Fa, l'.3)

L M N
(1)2(1'1,1"2,?'3)= E z E el(rl)

=1 m=0 =1

x bm(r2) 8,,(!'3) m2.lmn

(¥203) ppn = j‘:=0 IM o j:=0 e/(ry) b,(r2)

rh=

(44}

eulrs)wylry, ry, rs)

2 Z Zerrl

=1 m=tn=0

x em(rl) bn(rB) m3,{mn

ws(ry, ry, ra)=

L

M N
¥ —
From=[ [ | atdelr

% b,(rs) wyry, v, 13)

and similarly for the covariant

a;= ¥ (a;)

wind components

5. FINITE DIFFERENCE APPROXIMATION
ON A FIXED GRID

5.1. Mapping onto Physical Coordinates

Approximations required for the general coordinates
(2.11) on the physical domain ¥ < ®R* are developed as
follows. For any differentiable mapping %:[0, L]} x
[0, MIx[0,N]—= ¥ %(r)=s, we define a tangent
mapping n=%,%, with inverse p*=5"" as in (2.11). We
use the foilowing notation for restrictions of these mappings
to staggered grids: Define a vector field on a grid of cell

i-faces, p;: G;— W, with components {,];, je {1, 2, 3},
Ludr}l;=0rifds;l o, (5.1}

Define similarly a vector field #,: G, — ®?,
[n,(r)];=85;/0rl, e, (5.2}

The component of displacement in the i-direction at cell
i-faces is ér;: G, — R corresponding to a physical displace-
ment vector field at grid points ds: G, — R* is

or,=puf s
o5 =mn,0r,.

Define the cell volume scalar field at grid points v: G, — ‘R,

v=|nl, (5.3)

and the “staggered volume” at i-faces v, = [J,v.

5.2. Kinetic Energy

Given the momentum vector field u;: G,— R* on cell
i-faces, define new state variables

1/2 12
a=v"p Pntu,.

(5.4)
In order to define the kinetic energy of the system, we
also define an approximation of the corresponding
contravariant component at an i-face; w;xv)?pu*u

A variety of adequate approximations of w are posmble
A computationally favourable one is

w,y Ani
w,y [=| Uady T F Azz
W3 0345, 0F O34, 07

0,402 O A0F [ o
Oadas UF || a2

413 83

= Aa,

(55)
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where
j,.:{ﬁ’mf if i#j
YoOarm) i i=j
and
=07

A consistent definition of the total kinetic energy of the
system is then

K= Loy 0,0 =4 (o, Aa),

L

(5.6)

N
e

L

where, for any vector fields a: G,— % and b: G, > ¥, the
inner product {a,b) =3, _g a(r)* b(r). By inspection of
(5.5) the matrix A is symmetric: A* = A. We also want this
measure of the kinetic energy to be positive definite, so that
the energy (2.3) is an /, norm. We verify that (5.6) is positive
for any nonzero « as follows. First, note that for (3.1) and
(3.2),

Larpn,=0,0p)—-0,p02,

where p and (I, (p) are both scalar fields, so that

o, Ax) = <(é #,-Cl?‘ms)’ (}_; Hi D’M’»

Sl Aoy (0050 >

1

+3

i

IIMw

>, (5.7)
Here we assume cell volumes are positive so that u, is non-
singular. The expression (5.7) separates long and short
wavelength contributions to the kinetic energy, since U is a
low pass filter, whereas A is a high pass filter. Together,
these contributions ensure that all waves are represented
and (5.6} is positive definite.

5.3. A Tendency Operator That Does No Work

Define new state variables ¢ and A,

¢ ={(2vp/K)/? (3.8)
h=(2vpd)'~, (5.9)
where & is the gravitational potential. Define J, &, &
w A00] & o
cl=1010}|¢|=)]¢ (5.10)
h 0014 h

Since A (5.5) i1s symmetric and positive definite, we can
define a state vector ¢&,

[+
£=Jl,t’2 ¢
h

(5.11)

The sum of kinetic, internal, and gravitational energy of the
system is

3
%(Z <al'! CU,>+ <(P/K), V>+ <¢s Vp))
i=1

=3{a, Aoy + (e, ¢y + < hY) = 3<E O

We show that if 4 is not changing, then no net work is done
by the system

49}
h

o/t

w6 R

if and only if 4 is antisymmetric. First, antisymmetry

implies zero work rate because if 4= —A4* then
(J'PAT )= —(J2ATY)* 50 that
8ferd¢, & = (¢, /o)) + (@/en(&), &>
— <£’J1,"2AJ1,"26>+ <Jl,‘2AJ1,'2€, 5>
=0 (5.12)

Conversely, if the work rate is zero for all values of the reai
state vector £, then for any real state vector { in the domain
of A4 there is a £ for which { = J 3£ and

0= (& JPATEY + (TVATVE, &

=L A4+ A%

And therefore for all real fields @ and b in the domain of 4
we have the identity

O0=C{a+b), A+ A*}a+b)>
—{a, (A+ A%)ad> — (b, (A+ A")b)
= 2{b,(A+ A4%)a)

= A= —A%. (5.13)

We choose an antisymmetric operator A(ad, ¢, h) which
approximates {2.4)}<(2.6) when the parameters @, ¢, h
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approximate ¢, ¢, k at time !, so that the errors |w'— &l,
ic'—2|, and A" — k| are of the order of one timestep,

oy 0y
' W,

gjat| ay |=Al@, e h)| w,

¢ ¢

h h
L2 72 Ry P A w,
220 R, Ry P w,

= ) Rz Ry P A, @s |,
—-Pr —P¥ -P¥ T 0 ¢
-y - K —-FF 0 T
{5.14)

where an estimate of the volume displaced at an i-face is

3:':"}!2.0,-_”2@.'
and transport of a field fis described by the antisymmetric
operator 7 ;

3
T(f)= -1 Y 0IRA e, Oy
=1

—yT 2O xg A Xy 12f), (5.15)

Define W =v'”p~"2u, where u is the momentum three-
vector. We use the following estimate of W

3
W= 3 v 0*p v Vo,

(5.16)

i=1

The tendency of W due to transport and rigid-rotation of
the coordinates is

Bl W) =T W—20x W,

Then the effect of transport and rigid-rotation of the
coordinates on the tendency of o is described by the
antisymmetric operator 4,

Ry=v PpF O (VAT V=202 x ) O vy 2 (5.17)
# is defined so that the rates of change of covariant
components of velocity due to pressure differences between
cells approximate (2.4),

Ple)=3vilp ARy ki, (5.18)

and s is defined

H(hy=v)g, v~ 7h, (5.19)

Given that the net work rate is zero and, hence, that
A(®, 7, ) must be antisymmetric, we can now derive the
numerical approximation of energy-tendency from (5.18)
and (5.19) simply by reversing compositions and taking
adjoints of the operators as

3
dotcr=—7Y PHo)+Tc

i=1

3
=—hovTie Y b e,
3 i=1
A Y (vTRae Oy e
f=1

—v V20X, AFv 1) (5.20)
which is a discrete approximation of (2.5). Similarly, an
estimate of change of gravitational energy due to mass flux
is

3
djot{h)= =Y v '"P0Or g},

=1

3
—1Y 7RO

i=1

—v 200 kg AR 12p), (5.21)

6. GALERKIN APPROXIMATION
ON A FIXED GRID

An antisymmetric operator 4 (5.14) can be constructed
from the Galerkin approximation operators @, ¥, (4.3},
(4.4) as follows. The variables k, ¢, w;, p, v, {;, #,, £ are NOW
piecewise polynomials defined on each cell, and finite
differences are replaced by differential operators, but the
scheme is similar to the finite difference approximation. The
transport of a field f is described by the antisymmetric
operator T

3

T(fy=—1 2 (v"2/or.(p~ 70, f)

i=1

+@,p~28/dr, (v 21)).
Then the operators 7, &, #, 3¢ in (5.14) are re-defined:
T =0*Te
Ry=¥InHT-2Qx)n,¥,

P=— ¥ v~ 125(3r v IkCO
Hi=V}go.
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The Galerkin projection can then be completed by the
operator J (5.10) if J is re-defined so that
o={(¥F**¥) e
e=(@*@) ¢
h=(6*€)"'h

7. TIME INTEGRATION

7.1. Euler-Backward Explicit Integration
This scheme damps high-frequency waves. If ¢ is a real
vector representing the state of a system which evolves as

8/dn&)=— BE, (7.1)

where B is an antisymmetric operator, ie., B*= — 8, then
the “Euler-backward™ time-integration scheme for this is a
predictor—corrector method as follows:

51 +E_ &— B‘;:r

N (7.2)
£1+1 =£!—Bfr+l.

Then the consequent change in the euclidean norm [[£||
follows from
G =8 &
= €AY
= {{(2¢"— B — B*BL'), (— BS'— B*BLY))
==&, (B*B) ') + (& (B*BUB*B) I')

since antisymmetry implies (¢, BE> =0 and B*(B*B}+
(B*B)B=0. Hence we have

Igi =t < e, (7.3)

provided that

1Bl < 1, (7.4}
and we are free to choose a small enough timestep (define
one unit of time) so as to guarantee that (7.4) is true. From
(5.14), (5.11), and (7.1) we have

B=—J"A(w, ¢, h) ] (7.5)
and B is antisymmetric as required in the Euler-backward
scheme above.

7.1.1. THE EXPLICIT ALGORITHM. In general, conver-

gence of the Euler-backward scheme requires a forward
estimate of @, ¢, A in (7.5):

1

@ w w
cl=|c¢c | +IMom, e, )] ¢ {7.6)
h h
The forward step is then
(x‘) r+1 C{) t W !
é =| e[| +J4(o, e R)] c (7.7)
h h
The corrector step is
w r+'1 (J.'J i (I) 1+1
c =l e | +J4(®, ¢ k)| ¢ (7.8)
h h

1.2, Implicit Time Integration

Instead of the Euler-backward scheme (7.2), encrgy is
conserved exactly by the implicit scheme

é:+1 =€r_B(ér+l+£r)/‘2

=(1+3B) " (1—-31B)¢& (79)

since then

GO =GO =+ =8
= =2+ &2, BT+ 825
=),

This ensures exact conservation of energy but requires the
solution of a large set of linear equations for {1 + $B) .

7.3. Time Integration Diagrams

The above schemes are constructed from an antisym-
metric, and hence normal operator B. Therefore the
behaviour of these schemes can be shown by a two-dimen-
sional diagram in the eigenspace of B corresponding to
eigenvalue /b, since the phase space of the model is spanned
by such eigenspaces. Figure 1 shows the construction of one
timestep of a state vector £ for a Euler-backward scheme
(a), an Implicit scheme (b}, and a leapfrog scheme (c).
We emphasise that the eigenspaces will change from one
timestep to the next, but what does not change is the energy
norm. So although we cannot show several timesteps in
two-dimenstons, the behaviour of the length of the state
vector over a series of timesteps can be inferred from the
diagrams, In (a) it is evident that the vector &'*' will be
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a b

FIG. 1.
scheme in the eigenspace of B corresponding to eigenvalue ib.

shorter than &', provided b is not too large. Since & is
proportional to the timestep (one unit of time), we infer that
the Euler-backward scheme is dissipative. In (¢) we are
assuming a symmetry corresponding to the absence of the
leapfrog computational mode. From the diagram we expect
that lack of this symmetry would cause instability in the
system energy.

8. INCLUSION OF MORE COMPLEX PHYSICS

The general theoretical picture is simple: All physical pro-
cesses conserve total energy, and all state variables are to be
formulated so as to participate in a single budget for a total
physical energy that is an !/, norm on the system as a whole.
In a wet model, for example, each phase of water could be
accounted according to the amount of latent heat it stores.
This scheme will both enforce a balance in the net budget
of enmergy transformations and also deny credit on any
particular form of energy.

The following sections are intended to show that the
energy-bounded method could be used in a wide variety of
applications, by providing simple examples of ways that
complex physical processes such as diffusion of momentum
by Reynolds stresses, and of phase changes of water in a wet
model, could be incorporated into an energy-bounded
model.

8.1. Viscous Stresses and Heating

We derive an energy bounded approximation of the
Reynolds stresses due to turbulent momentum exchange on
spatial scales too small to be resolved by the model grid.
This approximation assumes that stress has been deter-
mined somehow, for example, from the rate of strain (e.g.,
[8]), and that any kinetic energy dissipated by Reynolds
stresses is converted directly into heat. Reynolds stresses are
modelled by a term R added to (2.7),
A&+ RE,

a/eng) = (8.1)

. 2ib§?‘*__\

Yt 2 et

Cc

A graphical construction of one timestep of a state vector & for (a) a Euler-backward scheme, (b} an Implicit scheme, and (¢} a leapfrog

where
I s N R
0 50 ElaSir,-c 0
R=1 Lo 21* pm2 0 ol
i=1
0 0 0

(s, 55, 83) are physical rectangular cartesian coordinates
and 7, is the stress vector across planes of constant s,
corresponding to stress tensor t.

The force on the jth face is calculated from the stress on
the directed area u,v; of the face. To construct an antisym-
metric approximation at time ¢ we approximate this force as
a linear function F{;c) of the internal energy variable c,
where, asin (5.14), ¢ is a zeroth-order approximation of ¢ at
time ¢,

Cie

F([]c)— "'uij‘

(8.2)

The viscous component of the tendency of the covariant
wind components «, at cell i-faces can'now be written

(8/61) g () =1 p 2y~ V2gx [, Z AF D

ji=1

(8.3)

Reversing compositions and taking adjoints of each
operator gives the corresponding approximation of the
heating due to viscous dissipation,

3
(8/3)& (c) % Z OFF*AXD¥nv;Pp o,

(8.4)

||‘M=..

8.2. Phase Changes of Water

Phase changes of water could be incorporated into an
energy-bounded model as follows. Transfer of heat between
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air, ice, water, and water vapour could be represented by an
antisymmetric operator on the energies stored by the air
and by each phase of water. Other accounting schemes may
also be suitable, depending on the application. Given the
masses per unit volume of ice p,, water py, and water
vapour p,., and corresponding energy densitics correspond-
ing to latent heats L, for the freezing of liquid water, L, for
condensation of water vapour, and L =L, + L, for the
formation of ice from water vapour, and with the addition
of a constant L, > 0 to ensure that the energy measures are
positive definite:

é‘LZr =p;L,
19w =pwll;+Ly)
395 =pv(L.+ Ly+ L)

In circumstances near thermal equilibrium, where dif-
ferences in the temperature of various components of the
mixture are negligible, we can generalize the internal energy
variable ¢ to represent the total sensible heat of the mixture;
then the conversion rates of g are represented by the
antisymmetric matrix (,

qy T qv) dy
Gw T (qw) gw
d/ét + 0 R 8.5)
/ q: T{q)) s (
4 9(0)—2?:19."(@;-) 4
where
0 —r. —F; F(rch+rsL5)
¥ O —rf —rfo
e= r, re 0 0
(rch+rsL,) ffo 0 0

The conversion rate factors r., r,, r, could be estimated
using standard “physics package” software as follows. The
partial tendencies of ¢ due only to phase changes could be
written

v —(gw+ecl.) —(q,+cL,) 0
duw | dv 0 —{gq,+cly)
@ q; - 0 qv 4
4 gyL. qvl; 4Ly
rC
x{ r, (8.6)
Ty

A standard “physics package” would predict all the partial

tendencies on the left side of (8.6}, and consequently over-
determine the conversion rate factors. One could ignore one
of the predictions of the “physics package” (preferably the
least reliable), solve the resulting partition of (8.6) to deter-
mine the conversion rate factors, and then use (8.5) to
estimate the full tendencies. This procedure would provide
an interface to force antisymmetry despite any incom-
patibilities of the package.

Another vital consideration, to guarantee the energy
bound, is the generalised CFL requirement (7.4). Although
a small enough timestep would suffice, a guarantee for long
timesteps would be desirable. One way towards providing
this could be via a condition of the kind )| Q) €e < 1.

9. COMPUTATIONAL EXPERIMENTS

In this section we validate the numerical method for
simulations of mountain waves. Using the simplest finite-
difference approximations (3.1), (3.2) we have computed the
flow aver a bell-shaped mountain. We compare our results
for a smali hill with the analytical linear solutions of Queney
in {17 and numerical experiments in [7]. For a large hill,
with conditions in which a lee-wave steepens and breaks to
produce a turbulent “hydraulic-jump” wake, we compare
our results with similar numerical experiments by [147.
Phenomena of this kind are observed in the real atmosphere
as pictured in [5] and described in [147.

Our simulations are in two-dimensions because of the
computationai cost of a 3D simulation, and this will be one
of the limitations on the realism of our turbufence. Another
limitation is that the only mechanism provided for dissipa-
tion at the shortest scales is via the damping of high frequen-
cies inherent in the Euler-backward scheme. This damping
is too weak to be physically realistic, because the timestep of
0.3 s is much shorter than the timescale of turbulence on the
scales resolved by the model. However, for the present
purpose we wish to avoid the complication of specifying a
parameterisation of turbulence, and we wish to demonstrate
that the choice of parameterisations is not prejudiced by any
consideration of numerical stability.

For these simulations an explicit time scheme has been
used, with a time step 4¢ of 0.3 s required to remain within
the CFL limit. To simplify comparisons the Earth rotation
rate has been set to zero. The horizontal grid spacing Ax is
2km in the 160 km wide central region and a horizontal
stretching (expansion factor 1.1) of the grid outside this
region has enabled the boundaries to be pushed so far away
that they do not affect the simulation. The vertical grid con-
sists of 36 layers of equal mass giving an effective resolution
{4z) of 200 m in the lowest few kilometers. All boundaries
of the model domain are rigid, fixed walls with zero normal
flux. To prevent this causing spurious reflection at the top,
a region of Rayleigh friction has been incorporated. The
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form of this friction closely follows that of [ 14 ] and consists
of adding a tendency term of the form

H-:z ($—¢) 4t
D¢=11
/ { ees [” (H—zd)]} 5005
to all variables ¢; z,; is the height above which the damping
is imposed—here it is 8.5 km. ¢ is the initial, upstream value
of ¢ and H is the height of the model domain—here it is
16 km.

These experiments simulate flow over a mountain of the
form

(9.1)

ha’
I, =—a—
Toxtag”

where z, is the surface elevation, x is the distance from
the centre of the mountain, a is the halfwidth—here it is
12 km—and 4 is the maximum mountain height. The model
atmosphere is isothermal with surface temperature (T,)
273 K and surface pressure (p.) 1013 hPa. Density and
pressure both decrease exponentially with height as

p:pseﬁgz,fRT,, pzpse—ng’RTs’

where here g is the gravitational acceleration, and they are

initially in approximate hydrostatic balance. This implies a
constant static stability parameter

Ne—2 _

C,T

P k3

=00187s"".

0.1. Perturbation of Flow by @ Small Hill

Here we compare the model with analytical solutions for
flow over a small hill. For this experiment the mountain
height # = 100 m and there is initially a uniform W-E flow
of U=15.04 ms~! throughout the model domain, making
the inverse Froude number

Nh
-1 20125,
=7

putting this simulation into the regime of linear soiutions.
The analytical and model solutions after 4 h of integration,
corresponding to a nondimensional time of

Y,
a

are compared in Fig. 2 and show good agreement. Vertical
momentum flux calculations are displayed in Fig. 3 at
hourly intervals as the simulation progresses. Except in

(a)
-

Height (km)

Height (km)

/|

-30KM

0 S0KM

FIG. 2. Vertical cross section of the vertical velocity from x= — 50 km to x = + 50 km for the 100 m beli-shaped mountain experiment. Contours
(negative dashed, zero highlighted) are every 0.04 ms~' for (2} the analytical solution, (b) the model solution after 4 h.
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FIG. 3. Momentum fux profiles for A=100m at (a) 1 h, (b) 2h,
(¢) 3A, and (d) 4 h, normalised by their hydrostatic, linear analytical
values.

PURNELL AND REVELL

the lowest kilometers, where weak nonlinearity is apparent,
the vertical momentum flux is within 5 to 10% of the
hydrostatic, linear analytical value consistent with the
results of [7] for similar parameters. Above 8.5 km: it is
clear that Rayleigh friction is absorbing all the upward
propagating gravity waves.

These simulations for a small hili were done using 64-bit
floating point arithmetic. In this experiment we are inter-
ested in relatively small perturbations of a large mean flow,
and we found these small differences to be noisy if computed
with 32-bit arithmetic.

9.2. Hydraulic-Jump over a Bell-Shaped Mowntain

We now consider a large amplitude case where non-linear
effects are important. For this experiment the mountain
height s = 1050 m and there is initially a uniform W-E flow
of U=752ms~" throughout the model domain. Saito
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FIG. 4. Vertical cross section of the wind from x = — 50 km 10 x = + 50 km for the 1-km bell-shaped mountain experiment. (u, w) wind vectors are
plotted every second point in the horizontal corresponding to a spacing of 4 km. The scaling of length of the wind vectors differs between piots; the
unmodified vectors at the top of each plot correspond to speeds of 7.52 ms~'; (a) after 30 min, (b} after 1 h, (c) after 1.5 h.
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and Tkawa [147] have used N=001s~!, U=4ms~' and
h=1050 m, thus giving similar values to the initial key
parameters, the vertical wavelength

22U
L=nT=2.51km

and the inverse Froude number

Nh
U

ol

Frl="—=26l1,

putting this simulation well into the nonlinear regime, and
just into the region of parameter space where flow reversal
should develop in the lee of the mountain peak. The main

a

differences between our simulation setup and that of [147]
are that we have not made the Boussinesq or anelastic
approximations, but we have allowed our experiment to
start abruptly with the full mountain from step one, with
any resulting shocks rapidly propagating out of the area,
and we do not have any explicit dissipation mechanism,
Figure 4a shows the mountain wave after 30 min begin-
ning to get established with some acceleration of the flow in
the lee of the mountain peak. A decelerated layer has also
begun to appear above this. The wind vectors are plotted at
every point in the vertical and every second point in the
horizontal, showing the terrain-following coordinate
system. In order to compare results with those in [14] and
to highlight the regions of accelerated and reversed flow,
Fig. 5 shows contours of the U/ field for the same experiment.
By 60 min Figs. 4b and 5b show several accelerated and

Height (km)
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]’4
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£ 5
= 4
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I
2«
‘l,
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]"
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= 4
e
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i

-50KN

0 J0KM

FIG. 5. Vertical cross section of the U component of the wind from x = — 50 km to x = + 50 km for the 1-km bell-shaped mountain experiment. Wind
contours are every 5 ms ~* with the zero contour highlighted: (a} after 30 min, (b) after 1 h, (c) after 1.5 h.

581/107/1-5
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decelerated layers with a region of reversed flow (indicating
wave breaking} at a height of 2 km in the lee of the peak.
The maximum low level wind is now 3.5 times the mean
initial wind, which is the same ratio as in [14]. As we con-
tinue the simulation, unstable shear layers develop, and the
model tries to adjust these on its smailest available scale.
After 1.5 h from Fig, 4c it is clear that a hydraulic jump has
formed in the lee of the mountain peak, and Fig. 5¢ indicates
that a low level area of reversed flow is now developing
upstream of the mountain, in accordance with [14].

9.3. Modelling of Turbulence

We do not intend to suggest that diffusion should be
neglected in a simulation of turbulent flow. Rather, we have
omitted it from the experiments just to demonstrate that the
method is stable for the least possible amount of diffusion,
even in severe circumstances, as asserted by the theory,

Figures 4c and 5c show production of turbulence on the
scale of the hydraulic jump, about 2 km in the vertical and
8 km in the horizontal and, as the integration progresses
further, on the scale of the grid cells as well, The rate of
production of turbulent kinetic energy is clearly greater on
the scale of the jump than on the smaller scale of the grid
cells.

It should therefore be possible to choose a turbulence
parameterisation which dissipates turbulence on small
scales, but which still allows overturning on the scale of the
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FIG. 6. Time series of {a) total energy, (b) kinetic energy, (c) internal
enerpy, (d) potential energy, and {e) total mass for the 1-km bell-shaped
mountain experiment using mks units.

jump. However, Saito and Tkawa [14] use a subgrid-scale
turbulence parameterisation scheme of the form given by
[11,97. This appears to prevent overturning of the
streamlines and allows a steady state to develop, but look-
ing at pictures like that of [5] it is not clear to us that this
is the correct physical solution, Hydraulic jumps usually
have a turbulent wake, where excess kinetic energy is dis-
sipated and overturning on the scale of the jump height is
likely. Some combination of overturning and mixing on
smaller scales is probably more accurate. Small scale mixing
could be modelled within the energy bounded method,
using the scheme described in Section 8.1, for example.

9.4. Energy Budgets

Figure 6 shows time series of the total energy, its kinetic,
internal, and potential components, and the total mass in
the model domain. The oscillations during the first half hour
are mainly vertically propagating acoustic waves due to the
initial conditions. The Euler-backward method damps
these, resuiting in balanced gravitational and pressure for-
ces. The steady loss of kinetic energy is due to an intense
acoustic wave propagating inwards from the lateral bound-
aries {not shown). These lateral boundaries are rigid, fixed,
impermeabie walls, so that behind the acoustic wave the
initial uniform velocity of 7.52 ms ! is reduced to zero, with
a conversion of kinetic to internal energy. A calculation of
this effect, modified by the Rayleigh friction applied above
8.5 km and accurate to 5%, explains a reduction of kinetic
energy to 90% after 1 h and 83 % after 2 h, compared to the
observed reductions of 91% after 1 h and 83% after 2 h
shown in Fig 6b. The Rayleigh friction is introduced in
order to prevent reflection of gravity waves from the top
boundary, but, on the other hand, this device complicates
our total energy statistics. The scheme is evidently stable for
a long period of turbulent flow, without any diffusion terms.

10. DISCUSSION AND SUMMARY

The general theoretical picture is simpie: All physical pro-
cesses conserve total energy, and in the “energy bounded”
scheme this total energy is an /, norm that provides a bound
on the system state. The great merit of this choice of norm
is that the method is applicable to a wide variety of real
physical probiems because, even in complex circumstances,
the total physical energy is conserved and each component
of this energy is in limited supply. It may be practical to
further restrict these supplies of available energy by tighten-
ing the definitions of the state variables. We have briefly
outlined an extension of this theory to incorporate
approximations of diffusion of momentum and phase
changes of water, and we do not anticipate any real dif-
ficulty in extending the /, norm to include further forms of
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energy. Rather, we expect that this approach will be helpful,
by enforcing balance in the net budget of energy transforma-
tions, while also refusing credit on any particular form of
energy. All state variables are to be formulated so as to
participate in a single budget for a total energy that is an /,
norm on the system as a whole.

The method was demonstrated for an “internal hydraulic
jump” flow over a bell-shaped mountain, simulating an
internal wave as it steepened into a turbulent jump. We
suggest that simulation of turbulent or separating flows are
applications for which the method may be particularly use-
ful. Here the use of the word “turbulent” implies that one is
not interested in much of the detail of the flow, such as the
instantaneous flow within a turbulent wake, yet one may
want to estimate some of the statistics of the turbulence,
such as the intensity, duration, and frequency of gusts at the
surface in the hydraulic jump example. While some form of
“parameterisation” of mixing will be needed to allow for
processes which are not resolved by the model, it may be a
good strategy to resolve as much as possible, and the
method ailows this by avoiding the need for spatial filtering
to maintain stability. We do not suggest that diffusion
should be neglected in a simulation of turbulent flow.
Rather, we have omitted it from the experiments just to
demonstrate that the method is stable for the least possible
amount of diffusion, even in severe tests, as asserted by the
theory.

The “energy bounded” method guarantees that no error
can grow unchecked, provided the timestep does not exceed
CFL limits. This was achieved by a choice of state variables
for which the total energy is an /, norm on the model state.
Conservation of energy is then equivalent to antisymmetry
of a tendency operator, both for continuous variables and
for discrete approximations. This antisymmetry provides a
simple rule for construction of discrete approximations that
limit the total energy. The Galerkin method naturally suits

this design because the Galerkin projection in these state
variables cannot increase the system energy. Transposed
difference operators provide a natural notation for finite-
difference approximation on staggered grids and for
construction of antisymmetric tendency operators.
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